If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+106x+144=0
a = 5; b = 106; c = +144;
Δ = b2-4ac
Δ = 1062-4·5·144
Δ = 8356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8356}=\sqrt{4*2089}=\sqrt{4}*\sqrt{2089}=2\sqrt{2089}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(106)-2\sqrt{2089}}{2*5}=\frac{-106-2\sqrt{2089}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(106)+2\sqrt{2089}}{2*5}=\frac{-106+2\sqrt{2089}}{10} $
| 2x-5x=7x-6 | | 3x+2x=96 | | x*100+(63-x)*25=3000 | | 9x-27x²=0 | | 2^x+1x2^3=64 | | 0.02/x=0.94 | | 100=q−-34 | | 100=(x*5000)/1250 | | 8/2x+12=6/x+87 | | -5u=65 | | 4j=52 | | (x/2)+20+(360-x)+20=360 | | j−70=17 | | z−444=45 | | 35x-x=31 | | -904=8k | | 72=y−-28 | | w+6=37 | | 54+x=54+26 | | -t=-58 | | 8f=88 | | m+81=47 | | j−26=-22 | | 2x^2+5x-9=(x+1)^2 | | 72=j+30 | | z−566=48 | | s+931=988 | | -16-7(2a+3)=232a | | 420=x+25 | | 32=4d+4 | | 10x-15=45-5x | | -24r=-464 |